Adsorption behavior of NH4+ and Mg2+ at kaolinite surfaces: Effect of the ion concentration, NH4+/Mg2+ mixing ratio, and layer charge

Author:

Shao Xiangsen1ORCID,Peng Chenliang12,Wang Guanshi12,Qin Lei12,Long Ping12

Affiliation:

1. School of Civil Engineering and Surveying & Mapping Engineering Jiangxi University of Science and Technology Ganzhou Jiangxi China

2. Jiangxi Provincial Key Laboratory of Water Ecological Conservation at Headwater Regions Jiangxi University of Science and Technology Ganzhou Jiangxi China

Abstract

AbstractThe adsorption behavior of NH4+ and Mg2+ at kaolinite surfaces was investigated by using molecular dynamics (MD) simulations, considering the factors such as ion concentration, NH4+/Mg2+ mixing ratio, and layer charge of kaolinite. The results showed that the increase in ion concentration did not affect the adsorption modes of NH4+ and Mg2+ ions but promote the increase in the adsorption capacity. The total adsorption capacities of Mg2+ and NH4+ were 3.25 × 10−6 and 2.85 × 10−6 μmol·mm−2 at the ion concentration of 1.5 mol·L−1, respectively. When NH4+ and Mg2+ were co‐adsorbed, they could inhibit the adsorption of each other at the surface of kaolinite, except that the inner‐sphere (IS) adsorption of NH4+ at aluminum hydroxyl (Al–OH) surface could be enhanced by the presence of Mg2+. Both NH4+ and Mg2+ tended to adsorb at the siloxane (Si–O) surface of kaolinite rather than Al–OH surface. When layer charge occurred in kaolinite, a small number of Mg2+ began to adsorb in the IS complexes at 1.7 and 2.3 Å above the Al and O atoms of the lattice‐substituted tetrahedra of the Si–O surface, and at 1.7 Å above the hexahedra of the Al–OH surface. However, most of NH4+ were adsorbed in IS complexes at 1.7 Å above the center of the oxygen six‐membered ring of the Si–O surface and above the hexahedron of the Al–OH surface. The adsorption capacity of Mg2+ changed little with the increase of layer charge density, while the IS and total adsorption capacity of NH4+ increased significantly.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3