Affiliation:
1. Water Centre Warsaw University of Life Sciences—SGGW Warsaw Poland
2. Institute of Soil Science, Plant Nutrition and Environmental Protection Wroclaw University of Environmental and Life Sciences Wroclaw Poland
3. Department of Biometry Warsaw University of Life Sciences—SGGW Warsaw Poland
4. Department of Environmental Improvement Warsaw University of Life Sciences—SGGW Warsaw Poland
Abstract
AbstractThis paper shows the changes in water sorptivity (Sw) and hydrophobicity following soil contamination with petroleum hydrocarbons (PHs) under different soil moistures. Laboratory experiments were carried out to verify that contamination with PHs reduces Sw, thus affecting the infiltrability, which in practice influences the field water capacity and the availability of water for plants. Soil water repellency (SWR) was estimated by the repellency index (R) and water drop penetration time (WDPT). The increase in PHs contamination contributed to SWR and caused a significant decrease in Sw. With the decrease in moisture, the water sorptivity of the soil increased, reaching its maximum at 0.12–0.15 cm3 cm−3, which was the threshold value in the case of the analysed soil, and then decreased drastically. The R index and the WDPT revealed a similar trend, inversely related to the level of soil contamination with PHs. The increase in SWR and the accompanying decrease in Sw made the soil less resistant to drought. The total amount of water available to plants in the control soil was 19.04%, whereas contamination with PHs equal to 100 g kg−1 caused a decrease to 6.36%. The almost threefold decrease in the total amount of water has a fundamental influence on increasing the risk of soil drought. The results obtained indicated that the interrelationship presented between the level of contamination with PHs, water sorptivity, SWR and soil moisture are the keys to predicting the environmental effects of contamination with PHs. The obtained results indicate that the undertaken remediation measures aimed at restoring the hydrological function of the soil system should be preceded by an assessment of soil hydrophobicity.
Subject
Soil Science,General Environmental Science,Development,Environmental Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献