Reducing the statistical error of generative adversarial networks using space‐filling sampling

Author:

Wang Sumin1ORCID,Gao Yuyou2,Zhou Yongdao2,Pan Bin2,Xu Xia3,Li Tao3

Affiliation:

1. Center for Combinatorics, LPMC & KLMDASR Nankai University Tianjin China

2. School of Statistics and Data Science, LPMC & KLMDASR Nankai University Tianjin China

3. College of Computer Science Nankai University Tianjin China

Abstract

AbstractThis paper introduces a novel approach to reducing statistical errors in generative models, with a specific focus on generative adversarial networks (GANs). Inspired by the error analysis of GANs, we find that statistical errors mainly arise from random sampling, leading to significant uncertainties in GANs. To address this issue, we propose a selective sampling mechanism called space‐filling sampling. Our method aims to increase the sampling probability in areas with insufficient data, thereby improving the learning performance of the generator. Theoretical analysis confirms the effectiveness of our approach in reducing statistical errors and accelerating convergence in GANs. This research represents a pioneering effort in targeting the reduction of statistical errors in GANs, and it demonstrates the potential for enhancing the training of other generative models.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Reference51 articles.

1. A general theory for orthogonal array based Latin hypercube sampling;Ai M.;Statistica Sinica,2016

2. Arora S. Ge R. Liang Y. Ma T. &Zhang Y.(2017).Generalization and equilibrium in generative adversarial nets (GANs). InProceedings of the 34th International Conference on Machine Learning PMLR pp.224–232.

3. Berthelot D. Schumm T. &Metz L.(2017).BEGAN: Boundary equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717.

4. Bowman S. R. Vilnis L. Vinyals O. Dai A. M. Jozefowicz R. &Bengio S.(2016).Generating sentences from a continuous space. InProceedings of the 20th SIGNLL Conference on Computational Natural Language Learning(pp.10–21).Association for Computational Linguistics.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3