Effect of XC functionals and dispersion corrections on the DFT‐computed structural and vibrational properties of SrCl2–NaCl and ZrF4–LiF

Author:

Mofrad Amir M.1ORCID,Christian Matthew S.12,Schorne‐Pinto Juliano1,Palma Jorge P. S.1,Besmann Theodore M.1

Affiliation:

1. Department of Mechanical Engineering University of South Carolina Columbia South Carolina USA

2. Sandia National Laboratory Albuquerque New Mexico USA

Abstract

AbstractDensity functional theory (DFT) calculations were performed to examine the impact of exchange–correlation (XC) functionals and van der Waals corrections (specifically the D3 method) on the structural and vibrational properties of the SrCl2–NaCl and ZrF4–LiF salt systems. Multiple XC functionals, including the local density approximation (LDA), the generalized gradient approximation using the Perdew–Burke–Ernzerhof (PBE) model, and its modified form suitable for solids (PBEsol), the dispersion‐corrected PBE‐D3 and PBEsol‐D3, were considered. Of these functionals, LDA was found to exhibit the highest degree of error, while PBEsol and PBE‐D3 displayed the least error. Underestimated lattice parameters compared with experimental values were observed to result in higher force constants, leading to an overprediction of vibrational frequencies. Conversely, an overestimation of lattice parameters was associated with lower vibrational frequencies. The methodology presented in this study yielded results that are in good agreement with experiment, irrespective of the method (finite differences vs. density functional perturbation theory) employed for calculating infrared and Raman spectra. It was further demonstrated that for alkali halides with weak Raman scattering, utilizing a supercell constructed from primitive cells better predicts Raman features than does the use of conventional cells.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3