Cell Autonomous and Nonautonomous Mechanisms Drive Hematopoietic Stem/progenitor Cell Loss in the Absence of DNA Repair

Author:

Cho Joon Seok12,Kook Sung Ho12,Robinson Andria Rasile13,Niedernhofer Laura J.14,Lee Byeong-Chel12

Affiliation:

1. University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania, USA

2. Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

3. Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania USA

4. Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Abstract

Abstract Daily, cells incur tens of thousands of DNA lesions caused by endogenous processes. Due to their long-lived nature, adult stem cells may be particularly susceptible to the negative impact of this constant genotoxic stress. Indeed, in murine models of DNA repair deficiencies, there is accumulation of DNA damage in hematopoietic stem cells and premature loss of function. Herein, we demonstrate that mice expressing reduced levels of ERCC1-XPF DNA repair endonuclease (Ercc1−/Δ mice) spontaneously display a progressive decline in the number and function of hematopoietic stem/progenitor cells (HSPCs). This was accompanied by increased cell death, expression of senescence markers, reactive oxygen species, and DNA damage in HSPC populations, illustrating cell autonomous mechanisms that contribute to loss of function. In addition, the bone marrow microenvironment of Ercc1−/Δ mice was not permissive for the engraftment of transplanted normal stem cells. Bones from Ercc1−/Δ mice displayed excessive osteoclastic activity, which alters the microenvironment in a way that is unfavorable to HSPC maintenance. This was accompanied by increased proinflammatory cytokines in the bone marrow of Ercc1−/Δ mice. These data provide novel evidence that spontaneous, endogenous DNA damage, if not repaired, promotes progressive attrition of adult stem cells via both cell autonomous and nonautonomous mechanisms.

Funder

Department of Defense

NIH

UPCI

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3