Alcohol exposure during pregnancy induces cardiac mitochondrial damage in offspring mice

Author:

Su Yujuan1ORCID,Yu Yujuan1,Quan Junjun1,Zhang Junjie1,Xu Ying1

Affiliation:

1. Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Children's Hospital of Chongqing Medical University Chongqing China

Abstract

AbstractBackgroundPrenatal alcohol exposure (PAE) has been linked to congenital heart disease and fetal alcohol syndrome. The heart primarily relies on mitochondria to generate energy, so impaired mitochondrial function due to alcohol exposure can significantly affect cardiac development and function. Our study aimed to investigate the impact of PAE on myocardial and mitochondrial functions in offspring mice.MethodsWe administered 30% alcohol (3 g/kg) to pregnant C57BL/6 mice during the second trimester. We assessed cardiac function by transthoracic echocardiography, observed myocardial structure and fibrosis through staining tests and electron transmission microscopy, and detected cardiomyocyte apoptosis with dUTP nick end labeling assay and real‐time quantitative PCR. Additionally, we measured the reactive oxygen species content, ATP level, and mitochondrial DNA copy number in myocardial mitochondria. Mitochondrial damage was evaluated by assessing the level of mitochondrial membrane potential and the opening degree of mitochondrial permeability transition pores.ResultsOur findings revealed that PAE caused cardiac systolic dysfunction, ventricular enlargement, thinned ventricular wall, cardiac fibrosis in the myocardium, scattered loss of cardiomyocytes, and disordered arrangement of myocardial myotomes in the offspring. Furthermore, we observed a significant increase in mitochondrial reactive oxygen species content, a decrease in mitochondrial membrane potential, ATP level, and mitochondrial DNA copy number, and sustained opening of mitochondrial permeability transition pores in the heart tissues of the offspring.ConclusionsThese results indicated that PAE had adverse effects on the cardiac structure and function of the newborn mice and could trigger oxidative stress in their myocardia and contribute to mitochondrial dysfunction.

Funder

Chongqing Municipal Science and Technology Bureau

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3