A Role for Borg5 During Trophectoderm Differentiation

Author:

Vong Queenie P.12,Liu Zhonghua12,Yoo Jae Gyu3,Chen Rong12,Xie Wen4,Sharov Alexei A.3,Fan Chen-Ming1,Liu Chengyu4,Ko Minoru S.H.3,Zheng Yixian12

Affiliation:

1. Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA

2. Howard Hughes Medical Institute, Baltimore, Maryland, USA

3. Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, Maryland, USA

4. Transgenic Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA

Abstract

Abstract Stem cell differentiation is accompanied by a gradual cellular morphogenesis and transcriptional changes. Identification of morphological regulators that control cell behavior during differentiation could shed light on how cell morphogenesis is coupled to transcriptional changes during development. By analyzing cellular behavior during differentiation of mouse embryonic stem cells (ESCs), we uncover a role of Borg5 (binder of Rho guanosine 5′-triphosphatase 5) in regulating trophectoderm (TE) cell morphogenesis. We report that differentiation of ESCs toward TE is accompanied by enhanced actin protrusion and cell motility that require upregulation of Borg5. Borg5 interacts with both Cdc42 and atypical protein kinase C (aPKC) and functions downstream of Cdc42 to enhance TE cell motility. Borg5 is required for the sorting of differentiating TE to the outside of ESCs in vitro. In developing embryos, Borg5 protein localizes to cell–cell contacts and the cytoplasm after compaction. It exhibits higher levels of expression in outer cells than in inner cells in morula and blastocysts. Reduction of Borg5 disrupts aPKC localization and inhibits blastocyst formation. Since Cdx2 and Borg5 facilitate each other's expression as ESCs differentiate toward TE, we propose that cell morphogenesis is coupled with transcriptional changes to regulate TE differentiation. Our studies also demonstrate the utility of ESCs in identifying morphological regulators important for development.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3