A semantic big data analysis method based on enhanced neural networks in IoT

Author:

Wang Chongke1ORCID

Affiliation:

1. Henan Institute of Technology Xinxiang China

Abstract

AbstractDue to the growth of neural networks, the semantic big data analysis method can classify images at the pixel level, which is very suitable for the needs of IoT. In semantic big data analysis methods, the DeepLab algorithm is an improved and highly accurate algorithm based on enhanced neural networks. However, the DeepLab algorithm does not fully utilize global information, resulting in poor performance for complex scenes. Therefore, this article makes improvements by introducing a global context information module and providing prior information of complex scenes in images. It extracts global information and merges with original features. It improves the expression ability of features. This global context can enhance the accuracy of semantic big data analysis method, and an attention mechanism is designed. The experimental results display that the improved DeepLab semantic big data analysis method based on self‐attention and global context module has good average pixel accuracy and average intersection to union ratio performance on the Pascal VOC 2012 dataset. And the improvement effect is significant.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3