Affiliation:
1. Institute of Medical Science, University of Toronto Toronto Ontario Canada
2. Department of Medical Imaging University of Toronto Toronto Ontario Canada
3. Department of Statistical Sciences University of Toronto Toronto Ontario Canada
Abstract
This scoping review examines the emerging field of synthetic ultrasound generation using machine learning (ML) models in radiology. Nineteen studies were analyzed, revealing three primary methodological strategies: unconditional generation, conditional generation, and domain translation. Synthetic ultrasound is mainly used to augment training datasets and as training material for radiologists. Blind expert assessment and Fréchet Inception Distance are common evaluation methods. Current limitations include the need for large training datasets, manual annotations for controllable generation, and insufficient research on incorporating new domain knowledge. While generative ultrasound models show promise, further work is required for clinical implementation.
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献