Device engineering of lead‐free FaCsSnI3/Cs2AgBiI6‐based dual‐absorber perovskite solar cell architecture for powering next‐generation wireless networks

Author:

Baruah Smriti1,Borah Janmoni1ORCID,Reddy Perugu Yaswanth1,Sindhupriya Chamarthi1,Sathvika Nara1,Rajasekaran Subramaniam1

Affiliation:

1. Department of Electronics and Communication Engineering Madanapalle Institute of Technology & Science Madanapalle India

Abstract

SummarySolar‐powered devices, such as wireless networks, are a crucial component of the Internet of Things (IoT). Designing and creating a solar cell architecture with an extended light absorption regime at a reasonable cost is therefore exceedingly important. All inorganic bismuth‐based Cs2AgBiI6 planar perovskite solar cells (PSCs) have garnered enormous significance due to their exceptional stability against oxygen, heat, and moisture. However, the power conversion efficiencies of Cs2AgBiI6‐based planar PSCs remain relatively low, primarily due to their limited light absorption range and interfacial charge recombination losses. This issue can be effectively addressed using a novel multi‐absorber architecture that incorporates dual absorbers with both lower band gap and wider band gap materials. This approach extends the light absorption range, enabling maximal utilization of the solar spectrum. Therefore, this article incorporates numerical modeling and guided optimization of ITO/ETL/Cs2AgBiI6/Fa0.75Cs0.25SnI3/HTL/Ag dual absorber‐based heterojunction structure to improvise the power conversion efficiency of Cs2AgBiI6‐based single‐absorber PSCs. The proposed configuration employs dual perovskite absorber layers (PALs) consisting of wide band gap Cs2AgBiI6 (1.6 eV) as the top absorber layer along with narrow bandgap Fa0.75Cs0.25SnI3 (1.27 eV) to act as the bottom absorber layer. Before evaluating the bilayer configuration, two standalone PSC architectures, namely, ITO/ETL/Fa0.75Cs0.25SnI3/HTL/Ag (D1)‐ and ITO/ETL/Cs2AgBiI6/HTL/Ag (D2)‐based PSC have been simulated and computed to perfectly fit the earlier anticipated state of art results. After effective validation of the photovoltaic parameters of the standalone architectures, both the absorber layers are appraised to constitute a dual active layer configuration ITO/ETL/Cs2AgBiI6/Fa0.75Cs0.25SnI3/HTL/Ag (D3) maintaining the overall absorber layer width constant to elevate the overall solar cell efficiency. Herein, a combination of various competent hole transport layers (HTLs) such as CBTS, CFTS, Cu2O, CuI, CuO, CuSCN, P3HT, PEDOT:PSS, and Spiro‐OMeTAD, as well as electron transport layers (ETLs) like C60, CeO2, IgZo, PCBM, TiO2, WS2, and ZnO, are adopted and compared to attain highly efficient bilayer PSC configuration. The crucial variables of all ETL‐ and HTL‐based proposed bilayer solar cell configurations including the thickness of PALs, the width of the carrier transport layers, defect densities of transport layers, the effect of operating temperature, series, and shunt resistances have been extensively optimized and tuned to attain preeminent photovoltaic power conversion efficiencies (PCEs) and quantum efficiencies (QEs). It has been well evinced that the proposed configuration with dual‐absorber layers could effectively widen the light absorption regime to the near‐infrared range and thus significantly contribute toward enhanced photovoltaic performance. The simulation results attained with SCAPS showcase the outstanding performance of the proposed dual active layer solar structure obtained with the combination of CuSCN HTL and TiO2 ETL pair. The work concludes a 35.01% optimized efficient ITO/TiO2/Cs2AgBiI6(PAL‐2)/Fa0.75Cs0.25SnI3(PAL‐1)/CuSCN/Ag bilayer solar cell configuration with enhanced short circuit current density (Jsc) of 32.24 mA/cm2, open circuit voltage (Voc) of 1.273 V, and 85.31% fill factor (FF) with 0.6‐ and 0.8‐μm PAL‐1 and PAL‐2 width respectively and 1014‐cm−3 defect density under AM1.G solar spectrum illumination with 1000‐W/m2 light power density. The proposed eco‐friendly solar structure will also help in providing power backup to the next‐generation communication units and devices. Notably the dual‐absorber structure integrating Cs2AgBiI6 and Fa0.75Cs0.25SnI3 materials demonstrates significant advantages in quantum efficiency and spectral coverage compared to using either material independently as single absorbers. The proposed model achieves a peak efficiency of approximately 93% across a spectral range of 300–975 nm, surpassing the 90% efficiency obtained with a single Cs2AgBiI6 absorber covering 300–700 nm. Moreover, it exceeds the 89% efficiency achieved by the single Fa0.75Cs0.25SnI3 absorber within the 300‐ to 974.5‐nm spectral range. Solar cells play a pivotal role in ensuring the sustainability, reliability, and cost efficiency of powering wireless nodes, especially in remote or environmentally sensitive areas where traditional power sources may be inadequate or unavailable. The proposed PSC, with a PCE of 35.01%, can generate 350.1 watts under standard test conditions. This provides sufficient power to support approximately 70 wireless nodes, including wireless sensor nodes, IoT devices, and others, each consuming approximately 5 watts of power.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3