BUS‐BRA: A breast ultrasound dataset for assessing computer‐aided diagnosis systems

Author:

Gómez‐Flores Wilfrido1,Gregorio‐Calas Maria Julia2,Coelho de Albuquerque Pereira Wagner3

Affiliation:

1. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Tamaulipas Mexico

2. Universidade Estácio de Sá Rio de Janeiro Brazil

3. Programa de Engenharia Biomédica/COPPE Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil

Abstract

AbstractPurposeComputer‐aided diagnosis (CAD) systems on breast ultrasound (BUS) aim to increase the efficiency and effectiveness of breast screening, helping specialists to detect and classify breast lesions. CAD system development requires a set of annotated images, including lesion segmentation, biopsy results to specify benign and malignant cases, and BI‐RADS categories to indicate the likelihood of malignancy. Besides, standardized partitions of training, validation, and test sets promote reproducibility and fair comparisons between different approaches. Thus, we present a publicly available BUS dataset whose novelty is the substantial increment of cases with the above‐mentioned annotations and the inclusion of standardized partitions to objectively assess and compare CAD systems.Acquisition and Validation MethodsThe BUS dataset comprises 1875 anonymized images from 1064 female patients acquired via four ultrasound scanners during systematic studies at the National Institute of Cancer (Rio de Janeiro, Brazil). The dataset includes biopsy‐proven tumors divided into 722 benign and 342 malignant cases. Besides, a senior ultrasonographer performed a BI‐RADS assessment in categories 2 to 5. Additionally, the ultrasonographer manually outlined the breast lesions to obtain ground truth segmentations. Furthermore, 5‐ and 10‐fold cross‐validation partitions are provided to standardize the training and test sets to evaluate and reproduce CAD systems. Finally, to validate the utility of the BUS dataset, an evaluation framework is implemented to assess the performance of deep neural networks for segmenting and classifying breast lesions.Data Format and Usage NotesThe BUS dataset is publicly available for academic and research purposes through an open‐access repository under the name BUS‐BRA: A Breast Ultrasound Dataset for Assessing CAD Systems. BUS images and reference segmentations are saved in Portable Network Graphic (PNG) format files, and the dataset information is stored in separate Comma‐Separated Value (CSV) files.Potential ApplicationsThe BUS‐BRA dataset can be used to develop and assess artificial intelligence‐based lesion detection and segmentation methods, and the classification of BUS images into pathological classes and BI‐RADS categories. Other potential applications include developing image processing methods like despeckle filtering and contrast enhancement methods to improve image quality and feature engineering for image description.

Publisher

Wiley

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3