Butyrate Improves Porcine Endometrial Epithelial Cell Receptivity via Enhancing Acetylation of Histone H3K9

Author:

Ye Qianhong123,Li Haoyu123,Xu Baoyang123,He Ziyi123,Yan Xianghua123ORCID

Affiliation:

1. State Key Laboratory of Agricultural Microbiology Hubei Hongshan Laboratory Frontiers Science Center for Animal Breeding and Sustainable Production College of Animal Sciences and Technology Huazhong Agricultural University Wuhan Hubei 430070 China

2. The Cooperative Innovation Center for Sustainable Pig Production Wuhan Hubei 430070 China

3. Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology Wuhan Hubei 430070 China

Abstract

ScopeUterine receptivity is a major restriction of embryo implantation and survival, and the endometrial luminal epithelium serves as the transient gateway for uterine receptivity and embryo implantation. Butyrate is reported to promote the success of embryo implantation, but the effects and mechanism of butyrate on uterine receptivity are still unknown.Methods and resultsPorcine endometrial epithelial cells (PEECs) are used as a model, and the cellular receptivity changes, metabolism, and gene expression profiles influenced by butyrate are analyzed. The study finds that butyrate improves receptive changes in PEECs, including inhibiting proliferation, exhibiting more pinocytosis on the cell surface, and increasing adhesiveness to porcine trophoblast cells. In addition, butyrate increases prostaglandin synthesis and markedly impacts purine metabolism, pyrimidine metabolism, and the FoxO signaling pathway. siRNA to inhibit the expression of FoxO1 and chromatin immunoprecipitation‐sequencing (ChIP‐seq) of H3K9ac are used to demonstrate that the H3K9ac/FoxO1/PCNA pathway can contribute to the effects of cell proliferation inhibition and uterine receptivity improvement induced by butyrate.ConclusionThe findings reveal that butyrate improves endometrial epithelial cell receptivity by enhancing the acetylation of histone H3K9, which shows nutritional regulation and therapeutic potential for poor uterine receptivity and difficulty in embryo implantation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3