Inhibition of the RBMS1/PRNP axis improves ferroptosis resistance‐mediated oxaliplatin chemoresistance in colorectal cancer

Author:

Xu Yini12,Hao Jingpeng3,Chen Qiang12,Qin Yafei4,Qin Hong12,Ren Shaohua12,Sun Chenglu12,Zhu Yanglin12,Shao Bo12,Zhang Jingyi12,Wang Hao12

Affiliation:

1. Department of General Surgery Tianjin Medical University General Hospital Tianjin China

2. Tianjin General Surgery Institute Tianjin China

3. Department of Anorectal Surgery Tianjin Medical University Second Hospital Tianjin China

4. Department of Vascular Surgery, Henan Provincial People's Hospital The Affiliated People's Hospital of Zhengzhou University Zhengzhou China

Abstract

AbstractThe majority of patients with advanced colorectal cancer have chemoresistance to oxaliplatin, and studies on oxaliplatin resistance are limited. Our research showed that RNA‐binding motif single‐stranded interacting protein 1 (RBMS1) caused ferroptosis resistance in tumor cells, leading to oxaliplatin resistance. We employed bioinformatics to evaluate publically accessible data sets and discovered that RBMS1 was significantly upregulated in oxaliplatin‐resistant colorectal cancer cells, in tandem with ferroptosis suppression. In vivo and in vitro studies revealed that inhibiting RBMS1 expression caused ferroptosis in colorectal cancer cells, restoring tumor cell sensitivity to oxaliplatin. Mechanistically, this is due to RBMS1 inducing prion protein translation, resulting in ferroptosis resistance in tumor cells. Validation of clinical specimens revealed that RBMS1 is similarly linked to tumor development and a poor prognosis. Overall, RBMS1 is a potential therapeutic target with clinical translational potential, particularly for oxaliplatin chemoresistance in colorectal cancer.

Publisher

Wiley

Subject

Cancer Research,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3