Robust H2 filtering of phase‐type semi‐Markov jump linear systems with cluster observations

Author:

de Oliveira André M.1ORCID,Costa Oswaldo L. V.2ORCID

Affiliation:

1. Instituto de Ciência e Tecnologia Universidade Federal de São Paulo São José dos Campos SP Brazil

2. Departamento de Engenharia de Telecomunicações e Controle Escola Politécnica da Universidade de São Paulo São Paulo SP Brazil

Abstract

AbstractIn this work we study the design of filters for phase‐type (PH) semi‐Markov jump linear systems, considering partial information on the system's operating mode and possible parameter uncertainties. With respect to the mode of operation, it is assumed that the state space of the semi‐Markov chain can be written as the union of disjoint sets, called clusters, and the only information available to the filter is which cluster the state of the semi‐Markov chain belongs to. A new linear matrix inequality (LMI) parameterization employing the slack variable technique is introduced for the design of switching full‐order filters according to the cluster observations so that suitable bounds on the norm of the estimation error are guaranteed for the uncertain system. If the system is restricted to be a Markov jump linear system and the Markov chain is assumed to be perfectly measured, the design conditions are shown to be also necessary leading to the optimal full‐order filter. Furthermore, the general filter can be particularized into an observer form for the case in which the system matrices are the same within each cluster and there are no parameter uncertainties except for possible uncertainties affecting the transition rates of the jumping process. The paper concludes with an illustrative example in the context of networked control systems.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3