Obesity and Type 2 Diabetes Alters the Immune Properties of Human Adipose Derived Stem Cells

Author:

Serena Carolina12,Keiran Noelia12,Ceperuelo-Mallafre Victoria12,Ejarque Miriam12,Fradera Rosa3,Roche Kelly12,Nuñez-Roa Catalina12,Vendrell Joan12,Fernández-Veledo Sonia12

Affiliation:

1. Hospital Universitari De Tarragona Joan XXIII, Institut D´Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Tarragona, Spain

2. Instituto De Salud Carlos III, CIBER De Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain

3. Hospital St. Pau I Sta Tecla, Tarragona, Spain

Abstract

Abstract Adipose tissue-derived stem cells (ASCs) are proposed as an alternative stem cell source to bone marrow-derived cells for immune cell therapy. However, microenvironmental factors may impact the functionality of this population in human adipose tissue (AT). We hypothesized that the fat depot in addition to the donor phenotype controls the immunomodulatory capacity of ASCs. Focusing on obesity and type 2 diabetes (T2D) as metabolic disorders that might affect the immune response of ASCs, we compared the inflammatory response of ASCs from subcutaneous and visceral AT of age-matched donors (lean n = 4, body mass index [BMI] 21.98 ± 1.9; obese n = 4 BMI 33.1 ± 2.1 and T2D n = 4 BMI 35.3 ± 1.5). Obese and particularly T2D-derived ASCs showed increased expression of inflammatory markers, activation of NLRP3 inflammasome and higher migration, invasion and phagocytosis capacities than those derived from lean donors. Remarkably, ASCs derived from obese and T2D subjects exhibited a reduction in typical immunosuppressive activities attributed to stem cells. Accordingly, obese and T2D-ASCs were less effective in suppressing lymphocyte proliferation, activating the M2 macrophage phenotype, and in increasing TGF-β1 secretion, than lean-derived ASCs. Treatment of lean hASCs with interleukin (IL)-1β mimicked the dysfunctional immune behavior of obese and T2D hASCs. Conversely, combined treatment with IL1RA and TGF-β1 reverted the phenotype of obese- and T2D-ASCs. These data indicate that the donor metabolic phenotype compromises the immunomodulatory properties of ASCs. These results are relevant not only for understanding the physiology of ASCs in terms of cell-based therapies but also for their role as key regulators of the immune response. Video Highlight: https://youtu.be/ceWOIIZd7Jo

Funder

Spanish Ministry of Economy and Competitiveness

European Regional Development Fund

Ministerio de Educación y Ciencia

“Miguel Servet” tenure track program

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3