Structure recovery and trend estimation for dynamic network analysis

Author:

Jiang Xiwen1,Margarita Livas Selena2,Yin Fan1ORCID,Banerjee Sayantan3ORCID,Butts Carter T.12,Shen Weining1ORCID

Affiliation:

1. Department of Statistics University of California, Irvine CA 92697 USA

2. Department of Sociology University of California, Irvine CA 92697 USA

3. Operations Management and Quantitative Techniques Area Indian Institute of Management Indore Indore 453556 India

Abstract

Low‐dimensional parametric models for network dynamics have been successful as inferentially efficient and interpretable tools for modelling network evolution but have difficulty in settings with strong time inhomogeneity (particularly when sharp variation in parameters is possible and covariates are limited). Here, we propose to address this problem via a novel family of block‐structured dynamic exponential‐family random graph models (ERGMs), where the time domain is divided into consecutive blocks and the network parameters are assumed to evolve smoothly within each block. In particular, we let the latent ERGM parameters follow a piecewise polynomial model with an unknown block structure (e.g., change points). We propose an iterative estimation procedure that involves estimating the block structure using trend filtering and fitting ERGMs for networks belonging to the same time block. We demonstrate the utility of the proposed approach using simulation studies and applications to interbank transaction networks and citations among political blogs over the course of an electoral cycle.

Funder

National Science Foundation

Simons Foundation

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3