Perfluorooctane Sulfonate (PFOS) Negatively Impacts Prey Capture Capabilities in Larval Zebrafish

Author:

Zoodsma Josiah D.12,Boonkanon Chanita34,Running Logan3,Basharat Rehman2,Atilla‐Gokcumen G. Ekin3,Aga Diana S.3,Sirotkin Howard I.2ORCID

Affiliation:

1. Graduate Program in Neuroscience Stony Brook University Stony Brook New York USA

2. Department of Neurobiology & Behavior Stony Brook University Stony Brook New York USA

3. Department of Chemistry University at Buffalo, The State University of New York Buffalo New York USA

4. Integrated Science and Technology Research Center, Faculty of Technology and Environment Prince of Songkla University, Phuket Campus Phuket Thailand

Abstract

AbstractPer‐ and polyfluoroalkyl substances (PFAS) are widely used in many industrial and domestic applications, which has resulted in unintentional human exposures and bioaccumulation in blood and other organs. Perfluorooctane sulfonate (PFOS) is among the most prevalent PFAS in the environment and has been postulated to affect brain functions in exposed organisms. However, the impacts of PFOS in early neural development have not been well described. We used zebrafish larvae to assess the effects of PFOS on two fundamental complex behaviors, prey capture and learning. Zebrafish exposed to PFOS concentrations ranging from 2 to 20 µM for differing 48‐h periods were viable through early larval stages. In addition, PFOS uptake was unaffected by the presence of a chorion. We employed two different experimental paradigms; first we assessed the impacts of increasing organismal PFOS bioaccumulation on prey capture and learning, and second, we probed stage‐specific sensitivity to PFOS by exposing zebrafish at different developmental stages (0–2 vs. 3–5 days post fertilization). Following both assays we measured the amount of PFOS present in each larva and found that PFOS levels varied in larvae from different groups within each experimental paradigm. Significant negative correlations were observed between larval PFOS accumulation and percentage of captured prey, whereas nonsignificant negative correlations were observed between PFOS accumulation and experienced‐induced prey capture learning. These findings suggest that PFOS accumulation negatively affects larval zebrafish's ability to perform complicated multisensory behaviors and highlights the potential risks of PFOS exposure to animals in the wild, with implications for human health. Environ Toxicol Chem 2024;00:1–9. © 2023 SETAC

Funder

U.S. Environmental Protection Agency

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3