Mathematical modelling of the mechanical response of geosynthetic‐reinforced and pile‐supported embankments

Author:

Mangraviti Viviana12ORCID,Flessati Luca23ORCID,di Prisco Claudio2ORCID

Affiliation:

1. Department of Architecture and Civil Engineering Chalmers University of Technology Goteborg Sweden

2. Department of Civil and Environmental Engineering Politecnico di Milano Milan Italy

3. Faculty of Civil Engineering and Geoscience Delft University of Technology Delft Netherlands

Abstract

AbstractPiled foundations are commonly employed to reduce settlements in artificial earth embankments founded on soft soil strata. To limit the number of piles and, consequently, construction costs, popular is the use of geosynthetic reinforcements laid at the embankment base. Nowadays, the complex interaction between geosynthetics, piles and soil is not yet fully understood and, in the scientific literature, simplified displacement‐based approaches to choose reinforcements, pile diameter and spacing are missing. In this paper, the authors, starting from the critical analysis and theoretical interpretation of finite difference numerical results, introduce a new mathematical model to rapidly assess both (i) differential/average settlements at the top of the embankment and (ii) maximum tensile forces in the basal reinforcement. The model, conceived to reproduce the response of a pile belonging to the central part of the embankment, is the result of an upscaling procedure based on a suitable sub‐structuring of the spatial domain (an axisymmetric unit cell) and on the concept of plane of equal settlements. For the foundation soil, drained conditions are considered, the pile skin roughness is disregarded, and piles are assumed to get the rigid bedrock. As generalised kinematic variables average and differential settlements are employed, whereas as generalized static ones the embankment height and the geosynthetic axial force. The model is validated against field measurements (where layered foundation soil and pile caps are included) and an application example of the model, used as a preliminary design tool in a displacement‐based perspective, is finally provided.

Publisher

Wiley

Subject

Mechanics of Materials,Geotechnical Engineering and Engineering Geology,General Materials Science,Computational Mechanics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3