A new generalized stochastic Petri net modeling for energy‐harvesting‐wireless sensor network assessment

Author:

Nourredine Oukas12ORCID,Menouar Boulif1ORCID,Campo Eric3ORCID,van den Bossche Adrien4

Affiliation:

1. LIMOSE Laboratory M'Hamed Bougara University of Boumerdes Boumerdes Algeria

2. LIM Laboratory, Department of Computer Sciences Akli Mohand Oulhadj University of Bouira Bouira Algeria

3. LAAS‐CNRS, University of Toulouse, CNRS, UT2J Toulouse France

4. IRIT‐CNRS, University of Toulouse, CNRS, UT2J Toulouse France

Abstract

SummaryThis paper proposes an energy‐harvesting‐aware model that aims to assess the performances of wireless sensor networks. Our model uses generalized stochastic Petri nets to define a sensor–neighbors relationship abstraction. The novelty of the proposed formulation is taking into account several real‐life considerations such as battery‐over breakdowns, unavailability of neighbors, retrial attempts, and sleeping mechanism in a single model. We use TimeNet tool to simulate the network behavior in order to evaluate its performance throughout different formulas after it had reached its steady state. Finally, we present a case study featuring the different solar energy recovery capabilities of the vast Algerian territory. The aim is to show with the presented model how to determine the kind of resources to be acquired in order to cope with the sensor deployment project requirements. The proposed model allows us to ensure that the battery energy level of sensors deployed in Algiers province for example is almost equal to 80% for 100 messages per day and (1 min/2 min) for (awakening time/sleeping time) ratio.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel fault detection and diagnostic Petri net methodology for dynamic systems;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3