Comparing methods for estimating causal treatment effects of administrative health data: A plasmode simulation study

Author:

Ress Vanessa12ORCID,Wild Eva‐Maria12ORCID

Affiliation:

1. Department of Health Care Management University of Hamburg Hamburg Germany

2. Hamburg Center for Health Economics (HCHE) Hamburg Germany

Abstract

AbstractEstimating the causal effects of health policy interventions is crucial for policymaking but is challenging when using real‐world administrative health care data due to a lack of methodological guidance. To help fill this gap, we conducted a plasmode simulation using such data from a recent policy initiative launched in a deprived urban area in Germany. Our aim was to evaluate and compare the following methods for estimating causal effects: propensity score matching, inverse probability of treatment weighting, and entropy balancing, all combined with difference‐in‐differences analysis, augmented inverse probability weighting, and targeted maximum likelihood estimation. Additionally, we estimated nuisance parameters using regression models and an ensemble learner called superlearner. We focused on treatment effects related to the number of physician visits, total health care cost, and hospitalization. While each approach has its strengths and weaknesses, our results demonstrate that the superlearner generally worked well for handling nuisance terms in large covariate sets when combined with doubly robust estimation methods to estimate the causal contrast of interest. In contrast, regression‐based nuisance parameter estimation worked best in small covariate sets when combined with singly robust methods.

Publisher

Wiley

Reference89 articles.

1. Should a propensity score model be super? The utility of ensemble procedures for causal adjustment

2. Examination of entropy balancing technique for estimating some standard measures of treatment effects: A simulation study;Amusa L.;Electronic Journal of Applied Statistical Analysis,2019

3. Measuring the impact of calorie labeling: The mechanisms behind changes in obesity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3