Nanopore environmental DNA sequencing of catch water for estimating species composition in demersal bottom trawl fisheries

Author:

Maggini Sara1ORCID,Jacobsen Magnus Wulff2ORCID,Urban Paulina2ORCID,Hansen Brian Klitgaard2ORCID,Kielgast Jos2ORCID,Bekkevold Dorte2ORCID,Jardim Ernesto3ORCID,Martinsohn Jann T.4ORCID,Carvalho Gary R.1,Nielsen Einar E.2ORCID,Papadopulos Alexander S. T.1ORCID

Affiliation:

1. Molecular Ecology and Evolution at Bangor, School of Natural Sciences Bangor University Bangor UK

2. Section for Marine Living Resources, National Institute of Aquatic Resources (DTU Aqua) Technical University of Denmark Silkeborg Denmark

3. Marine Stewardship Council London UK

4. European Commission, Joint Research Centre (JRC), Directorate D – Sustainable Resources, Unit D2 – Ocean and Water Ispra Italy

Abstract

AbstractBycatch and discards, representing unwanted catches, undermine sustainable fisheries and hinder the conservation of vulnerable and endangered species. To effectively monitor bycatch and enhance the effectiveness of management measures while promoting sustainable fishing practices, reliable data is essential. Here, we explore the use of Nanopore metabarcoding to analyze the catch composition in demersal bottom fisheries. We collected eDNA samples directly from an onboard catch holding tank (catch water) for 10 fishing hauls from a fishing vessel operating in the Skagerrak (North‐East Atlantic). The approach involved sequencing a combination of long (~2 kb) and short (~170–313 bp) mitochondrial amplicons and was validated by analyzing a fishery‐related mock community sample and fishing haul replicates. Overall, the detection rate accuracy was 95% for landed species, and replicates obtained from the same fishing haul showed consistent results, validating the robustness of this approach. The detection rate accuracy for all caught species observed on board (including the non‐landed fraction) was 81%. Undetected species were always limited to species in low abundance, but may also be attributed to problems with identifying closely related species due to the impact of sequencing errors and limited diagnostic variation in the genetic regions used. In the future, such biases may be reduced by using additional markers to increase species discrimination power and applying newly available technological advantages in flow cell chemistry to improve sequencing accuracy. In conclusion, this study demonstrates the effectiveness of Nanopore eDNA sequencing of catch water for estimating species composition in demersal bottom trawl fisheries, including catches of non‐commercial and threatened and vulnerable species, without disrupting fishing activities. Incorporating eDNA analysis of catch water may therefore help facilitate effective monitoring, leading to better‐informed fisheries management, biodiversity conservation efforts, and the implementation of relevant legislation such as the EU landing obligation.

Funder

Miljø- og Fødevareministeriet

Horizon 2020 Framework Programme

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3