Quantifying human activity intensity in the Qinling‐Daba Mountains

Author:

Xie Wenqi12ORCID,Yao Yonghui1ORCID

Affiliation:

1. State Key Laboratory of Resources and Environmental Information System Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

Abstract

Abstract Human activities profoundly impact the Earth system such as climate change, biodiversity, disease transmission. Accurately acquiring and assessing the human activity intensity (HAI) is crucial to exploring human‐nature relationships. However, the mismatch of geospatial data products between humans and natural environmental factors is a data bottleneck that restricts the innovation and development of regional human‐Earth systems. Nowadays, some HAI data products exist, such as the global human footprint map and the cumulative human modification map, but their spatial resolution is still too coarse (1 km) for regional research. Importantly, there are limitations to the method of mapping HAI: an incomplete indicator system that ignores the natural dimension makes the assessment of HAI less accurate and comprehensive; ignoring correlations among indicators, subjective weighting method and overlapping indicators lead to potential overestimation of HAI. Here, a new approach to improve the quantification of HAI at the regional scale was presented and the HAI of the Qinling‐Daba Mountains (QinBa) was mapped and analysed as a case study. First. an improved indicator system was constructed from two dimensions: natural environment and resources (including topography and river density), social and economics (including population density, degree of land modification, remoteness from roads/railways, remoteness from settlements and road density). The models for scoring the indicators were then improved. Additionally, principal component analysis was adopted to transform seven indicators into four independent principal components (PCs). The four PCs were combined based on their variance contribution to generate the HAI map, effectively eliminating redundancy and correlation among the indicators. The results showed that the improved method solved the problem of overestimation in previous studies and objectively mapped the HAI of QinBa. We found that although QinBa's HAI was moderate (MHAI = 0.48), places with low HAI were isolated as ‘islands’ by places with high HAI, indicating that the scope of human activities in this area is extensive. This study not only provides novel insights into quantifying HAI but also provides high‐resolution HAI data (100 m) and priority attention zones for human‐nature interaction studies in QinBa, which can help guide policy‐making for management and conservation efforts. Read the free Plain Language Summary for this article on the Journal blog.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3