Slope stability analysis with a hypoplastic constitutive model: Investigating a stochastic anisotropy model and a hydro‐mechanical coupled simulation

Author:

Xue Yang1,Miao Fasheng2ORCID,Wang Shun3,Tang Yang4ORCID,Wu Yiping2,Dias Daniel5ORCID

Affiliation:

1. School of Geosciences Yangtze University Wuhan People's Republic of China

2. Faculty of Engineering China University of Geosciences Wuhan People's Republic of China

3. State Key Laboratory of Water Resources Engineering and Management Institute of Engineering Risk and Disaster Prevention Wuhan University Wuhan People's Republic of China

4. Engineering Digital Technology Center Central‐South Architectural Design Institute Co., Ltd Wuhan People's Republic of China

5. Laboratory 3SR Grenoble Alpes University Grenoble France

Abstract

AbstractA reliable constitutive model is essential for accurately predicting slope deformation in numerical analysis, which includes assessing slope stability as an integral component. However, calculating slope stability in numerical models can be challenging due to complex boundary conditions and advanced constitutive models, especially when probabilistic and hydro‐mechanical coupled simulations are required. In this paper, we use a vector‐sum method‐based framework for slope stability analysis that incorporates a critical state hypoplastic constitutive model. The rationality and accuracy of the stability results are initially verified through critical slip surface analysis and a factor of safety evaluation. Subsequently, we investigate the probability‐based slope stability and failure characteristics by incorporating the spatial variability of strength parameters into the hypoplastic model. Finally, the Baishuihe landslide in the Three Gorges Reservoir Region is examined as a case study, where hydro‐mechanical coupled simulations are conducted under actual water level and rainfall conditions. The time‐varying stability and deformation characteristics of the landslide are analyzed and compared with the results obtained from the Mohr‐Coulomb model. The analysis results demonstrate the practicality and efficiency of using a hypoplastic model for probabilistic and time‐varying slope stability calculations. Furthermore, it highlights the superior ability of the hypoplastic model to accurately describe reservoir landslide deformation processes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3