Complete resolution across the neodymium/samarium isotopic envelope with a liquid sampling‐atmospheric pressure glow discharge — Orbitrap mass spectrometer

Author:

Goodwin Joseph V.1ORCID,Shrestha Suraj1ORCID,Manard Benjamin T.2ORCID,Marcus R. Kenneth1ORCID

Affiliation:

1. Department of Chemistry, Biosystems Research Complex Clemson University Clemson SC USA

2. Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN USA

Abstract

RationaleNd and Sm isotope ratios play an important role in geological dating and as nuclear forensic signatures; however, the overlap of the respective 144, 148, 150 Nd/Sm isobars requires prior separations to be performed before analysis on typical MS platforms. The work presented here overcomes these isobaric interferences using ultrahigh‐mass resolution to alleviate interference without prior chemical separations.MethodsA liquid sampling‐atmospheric pressure glow discharge ion source was coupled to a standard, QExactive Focus Orbitrap mass spectrometer, providing a mass resolution of ~80 k. A Spectroswiss FTMS booster X2 data acquisition package was used to collect extended transients, providing much higher mass resolution; ~230 k and ~600 k are employed here for Nd and Sm isotopes.ResultsWhile the standard Orbitrap resolution is far greater than typical “atomic” MS platforms, it was insufficient to alleviate all isobars. The use of a resolution of ~230 k resulted in baseline separation across the entire isotopic envelope for both Nd and Sm. Isotope ratios obtained from Nd:Sm mixtures using high‐resolution were equivalent to those found for individual‐element solutions, while isotope ratios obtained at a resolution of ~80 k (standard for the OEM data system) showed large deviations.ConclusionsUse of ultrahigh‐resolution is an attractive alternative to extensive chemical separations to alleviate severe isobaric interferences. Sufficient mass resolution greatly reduces/eliminates the need for sample manipulations (separations) before analysis while reducing costs and total analysis times.

Funder

Oak Ridge National Laboratory

National Nuclear Security Administration

U.S. Department of Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3