GABAA Receptor Signaling Induces Osmotic Swelling and Cell Cycle Activation of Neonatal Prominin+ Precursors

Author:

Cesetti Tiziana1,Fila Tatiana1,Obernier Kirsten1,Bengtson C. Peter1,Li Yuting1,Mandl Claudia1,Hölzl-Wenig Gabriele1,Ciccolini Francesca1

Affiliation:

1. Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany

Abstract

Abstract Signal-regulated changes in cell size affect cell division and survival and therefore are central to tissue morphogenesis and homeostasis. In this respect, GABA receptors (GABAARs) are of particular interest because allowing anions flow across the cell membrane modulates the osmolyte flux and the cell volume. Therefore, we have here investigated the hypothesis that GABA may regulate neural stem cell proliferation by inducing cell size changes. We found that, besides neuroblasts, also neural precursors in the neonatal murine subependymal zone sense GABA via GABAARs. However, unlike in neuroblasts, where it induced depolarization-mediated [Ca2+]i increase, GABAARs activation in precursors caused hyperpolarization. This resulted in osmotic swelling and increased surface expression of epidermal growth factor receptors (EGFRs). Furthermore, activation of GABAARs signaling in vitro in the presence of EGF modified the expression of the cell cycle regulators, phosphatase and tensin homolog and cyclin D1, increasing the pool of cycling precursors without modifying cell cycle length. A similar effect was observed on treatment with diazepam. We also demonstrate that GABA and diazepam responsive precursors represent prominin+ stem cells. Finally, we show that as in in vitro also in in vivo a short administration of diazepam promotes EGFR expression in prominin+ stem cells causing activation and cell cycle entry. Thus, our data indicate that endogenous GABA is a part of a regulatory mechanism of size and cell cycle entry of neonatal stem cells. Our results also have potential implications for the therapeutic practices that involve exposure to GABAARs modulators during neurodevelopment.

Funder

Landesstiftung Baden-Württemberg

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3