Effect of hexyl‐branched backbone size on the size distribution and coalescence of free volume around an amphiphilic molecule

Author:

Kavyani Sajjad1,Soares João B. P.1,Choi Phillip12ORCID

Affiliation:

1. Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada

2. Faculty of Engineering and Applied Science University of Regina Regina Saskatchewan Canada

Abstract

AbstractWe used molecular dynamics simulation to study the size distribution and coalescence of free volume around an amphiphilic molecule (nonyl ethoxylate (NE)) at a concentration of 0.5 wt% in blends of linear and branched polyethylene that contained a small four‐arm alkane (7,12 hexyl octadecane). The branched polyethylene chains had 10 and 82 hexyl branches/1000 backbone carbons. The coalescence dynamics (fluctuation of free volume in time) was quantified by the number of Fourier frequencies and the corresponding power (amplitude). In our previous work, we hypothesized that cavitation, the first step of environmental stress cracking observed experimentally, starts from the free volume coalescence at the interface between NE and polyethylene molecules and showed that hexyl branches in the branched polyethylene molecules suppress such coalescence, suggesting that cavitation, a much longer time scale process, could also be slowed down. The current work showed that the behavior of hexyl branches in branched polyethylene in a blend with linear polyethylene was similar to that in pure branched polyethylene, but that the hexyl branches in the 7,12 hexyl octadecane exhibited the opposite behavior. In particular, they intensified free volume coalescence, especially around the hydrophilic ethylene oxide segments of NE. The addition of 7,12 hexyl octadecane to branched polyethylene alone or blended with linear polyethylene does not seem to slow down free volume coalescence (cavitation), leading us to conclude that the effect of hexyl branches on the free volume coalescence around NE depends on the size of the backbone to which the branches are attached.Highlights Hexyl branches reduce free volume coalescence activities. The longer the backbone is, the stronger the hexyl branch effect. More coalescence activities occur on the hydrophilic segment of NE.

Funder

Imperial Oil Limited

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3