Reconfigurable flexible thermoelectric generators based on all‐inorganic MXene/Bi2Te3 composite films

Author:

Xu Yunhe1,Wu Bo12,Hou Chengyi1,Li Yaogang3,Wang Hongzhi1,Zhang Qinghong3ORCID

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai China

2. Hong Kong Centre for Cerebro‐cardiovascular Health Engineering College of Materials Science and Engineering City University of Hong Kong Hong Kong China

3. Engineering Research Center of Advanced Glasses Manufacturing Technology Ministry of Education College of Materials Science and Engineering Donghua University Shanghai China

Abstract

AbstractFlexible thermoelectric generators (FTEGs) represent an excellent solution for energizing wearable electronics, capitalizing on their ability to transform body heat into electrical energy. Nevertheless, their use in the wearable industry is limited by the insufficient thermoelectric (TE) efficiency of materials and the minimal temperature variation among the devices. In this study, we have developed a Lego‐like reconfigurable FTEG by combining flexible TE chips, rheological liquid‐metal electrical wiring, and a stretchable substrate in a mechanical plug‐in configuration. The flexible TE chips are constructed from n‐type all‐inorganic MXene/Bi2Te3 composite films, which have their TE properties further enhanced through heat treatment. A demonstration of the FTEG illustrates its capability to convert heat into vertical temperature difference (ΔT), leading to a substantial ΔT at the cold end in contact with the environment, resulting in a power output of 7.1 μW with a ΔT of 45 K from only 5 TE chips. The reconfigurable FTEG presents significant potential for wearable devices to harness low‐grade heat.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3