Affiliation:
1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai China
2. Hong Kong Centre for Cerebro‐cardiovascular Health Engineering College of Materials Science and Engineering City University of Hong Kong Hong Kong China
3. Engineering Research Center of Advanced Glasses Manufacturing Technology Ministry of Education College of Materials Science and Engineering Donghua University Shanghai China
Abstract
AbstractFlexible thermoelectric generators (FTEGs) represent an excellent solution for energizing wearable electronics, capitalizing on their ability to transform body heat into electrical energy. Nevertheless, their use in the wearable industry is limited by the insufficient thermoelectric (TE) efficiency of materials and the minimal temperature variation among the devices. In this study, we have developed a Lego‐like reconfigurable FTEG by combining flexible TE chips, rheological liquid‐metal electrical wiring, and a stretchable substrate in a mechanical plug‐in configuration. The flexible TE chips are constructed from n‐type all‐inorganic MXene/Bi2Te3 composite films, which have their TE properties further enhanced through heat treatment. A demonstration of the FTEG illustrates its capability to convert heat into vertical temperature difference (ΔT), leading to a substantial ΔT at the cold end in contact with the environment, resulting in a power output of 7.1 μW with a ΔT of 45 K from only 5 TE chips. The reconfigurable FTEG presents significant potential for wearable devices to harness low‐grade heat.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献