Novel hawk swarm‐optimized deep learning classification with K‐nearest neighbor based decision making for autonomous vehicle movement controller

Author:

Qingmiao Zhang1ORCID,Dinghua Zhang1

Affiliation:

1. Computer Science and Information Technology Northern Arizona University Flagstaff Arizona USA

Abstract

SummaryNowadays, intelligent transportation systems pay a lot of attention to autonomous vehicles it is believed that an autonomous vehicle improves mobility, comfort, safety, and energy efficiency. Making decisions is essential for the development of autonomous vehicles since these algorithms must be able to manage dynamic and complex urban crossings. In this research an optimal deep BiLSTM‐GAN classifier to detect the movement of smart vehicles, initially the preprocessing stage is performed to decrease noise in the received data after that the essential regions are next be extracted in the region of interest (ROI) to make the right decision. The extracted data are forwarded to the GAN for road segmentation as well as the optimized deep BiLSTM classifier, which recognizes the traffic sign, simultaneously making it possible to do a modified Hough line‐based maneuver prediction using the segmented information from the roads. Finally, the GAN determines the lane, and the BiLSTM predicts the traffic sign. The K‐nearest neighbor (KNN)‐based autonomous vehicle movement controllers are used to make the decision based on the predicted traffic sign and information about the lane. The proposed HSO algorithm was developed as the outcome of the common fusion of hawk and swarm optimization. Based on lane detecting achievements, at training percentage (TP) 90, the accuracy is 91.75%, Peak signal‐to‐noise ratio (PSNR) is 64.84%, mean square error (MSE) is 28.78, and mean absolute error (MAE) is 20.20, respectively, similarly based on the traffic sign prediction achievements at TP 90, the accuracy is 93.71%, sensitivity is 95.15%, specificity is 93.91%, and MSE is 28.78%, respectively.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3