Blockchain‐based secure multifunctional data aggregation for fog‐IoT environments

Author:

Abbas Mehdi Madjid1ORCID,Merad‐Boudia Omar Rafik1,Senouci Sidi Mohammed2,Belalem Ghalem1

Affiliation:

1. LIO Laboratory University of Oran1 Ahmed Ben Bella Algeria

2. DRIVE Laboratory University of Burgundy France

Abstract

SummaryData aggregation, in its basic form, has been widely used, and several solutions have been proposed for IoT environments. However, to calculate statistical metrics, detect anomalies, and predict future trends, we need to perform various data analysis functions on the aggregated data. Recently, multifunctional data aggregation (MFDA) has been proposed to calculate various statistical functions such as sum, mean, variance, covariance, and analyze of variance (ANOVA). The purpose of MFDA is to enable the improvement of decision making, resource allocation and system performance by providing diverse and varied statistical data. However, the existing solutions involving MFDA generate significant communication and calculation costs. Furthermore, they cannot prevent malicious aggregators from sending fake data. Recently, the Fog computing paradigm has been adopted in IoT environments to address various challenges and enhance the efficiency of data processing and storage. The blockchain technology has been integrated in various IoT applications to enhance the security, increase transparency, and facilitate decentralized data exchange and transactions. In this article, we propose BMDA, a blockchain‐based secure multifunctional data aggregation method for IoT‐Fog environments. BMDA employs an encoding function to structure the data before their transmission. Furthermore, to ensure privacy preservation, authentication, data integrity and to resist malicious aggregators, we employ Paillier homomorphic encryption, BLS signature, and blockchain technology. The security analysis demonstrates the robustness of our proposal, and the performance analysis in terms of computations and communications shows the effectiveness of BMDA compared to existing solutions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3