Bilevel access control and constraint‐aware response provisioning in edge‐enabled software defined network‐internet of things network using the safeguard authentication dynamic access control model

Author:

D S Sahana1ORCID,S H Brahmananda2

Affiliation:

1. Department of CSE, GITAM School of Technology GITAM University Bengaluru Karnataka India

2. Ashtaksha Labs Pvt Ltd Bengaluru Karnataka India

Abstract

SummaryBy controlling the network, the Internet of Things (IoT)‐connected software‐defined network (SDN) limits the scalability of IoT devices. Since SDN depends on a centralized controller that attackers can easily affect, it is incredibly susceptible to attacks. Secure access control to the SDN controller was the focus of the prior methods for controller scalability and restricted trust management. A framework called Safeguard Authentication Dynamic Access Control (SANDMAC) is suggested to safeguard and offer useful services to enterprises. Authentication confirms legitimacy after all users and applications have been registered. To improve network security, policies let users grant access to account attributes, legal activities, and temporal components. The administrator lessens conflicts between the methods by validating and saving the policies in the database. The services are provided to dependable customers using the forensic‐based investigation algorithm, depending on the quality of service and software level agreements requirements, decreasing reaction times and maximizing resource usage. Performance comparisons between the new and previous efforts are validated using a variety of parameters, and the proposed work is validated using the iFogSim application. According to the findings, SANDMAC significantly raises key performance indicators. SANDMAC specifically keeps false positives at 3.5% and accomplishes a low response time of 60 ms for roughly 800 authorized accesses. SANDMAC is a better option because of these enhancements, which result in longer network lifetimes and more dependable data transmission.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3