Material point method‐based simulation of dynamic process of soil landslides considering pore fluid pressure

Author:

Wu Fengyuan1,Sun Wei2ORCID,Li Xinchao1,Guan Yongping3ORCID,Dong Manman4

Affiliation:

1. School of Civil Engineering Shenyang Jianzhu University Shenyang China

2. School of Civil Engineering Sun Yat‐sen University Guangzhou China

3. Taizhou Transportation Investment Group Taizhou China

4. Department of Engineering Management Changshu Institute of Technology Changshu China

Abstract

AbstractIn this study, the dynamic process of soil landslides is investigated using the material point method (MPM). A basal friction algorithm is developed based on the MPM, and the pore water pressure is considered for calculating the basal friction. A large‐scale debris flow experiment is performed to validate the effectiveness of the MPM in simulating the dynamic process of soil landslides. The calculated depths of the debris flow using the MPM are consistent with the experimental results. The effects of the basal friction angle and internal friction angle on the debris flow depths are discussed. Moreover, a landslide case is simulated using the MPM, and the calculation results are consistent with the measured results. The horizontal velocity, vertical velocity, velocity direction, and kinetic energy of the landslide are analyzed. Finally, a case involving a different slope near a landslide is evaluated using the MPM. The distributions of velocity in different directions and changes in the average velocity, kinetic energy, and sliding distance are analyzed. By setting a retaining wall, the accumulation height of a landslide accumulated at the retaining wall and the normal force on the retaining wall can be estimated.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Mechanics of Materials,Geotechnical Engineering and Engineering Geology,General Materials Science,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3