Fault detection and classification in overhead transmission lines through comprehensive feature extraction using temporal convolution neural network

Author:

Tunio Nadeem Ahmed12ORCID,Hashmani Ashfaque Ahmed2,Khokhar Suhail3,Tunio Mohsin Ali1,Faheem Muhammad4ORCID

Affiliation:

1. Department of Electrical Engineering Mehran University of Engineering & Technology Shaheed Zulfiqar Ali Bhutto Campus Khairpur Mir's Khairpur Sindh Pakistan

2. Department of Electrical Engineering Mehran University of Engineering and Technology Jamshoro Sindh Pakistan

3. Department of Electrical Engineering Quaid‐e‐Awam University of Engineering, Science and Technology Nawabshah Sindh Pakistan

4. School of Technology and Innovations University of Vaasa Vaasa Finland

Abstract

AbstractFaults in transmission lines cause instability of power system and result in degrading end users sophisticated equipment. Therefore, in case of fault and for the quick restoration of problematic phases, reliable and accurate fault detection and classification techniques are required to categorize the faults in a minimum time. In this work, 500 kV transmission line (Jamshoro‐New Karachi), Sindh, Pakistan has been modeled in MATLAB. The discrete wavelet transform (DWT) has been used to extract features from the transient current signal for different faults in 500 kV transmission line under various parameters such as fault location, fault inception angle, ground resistance and fault resistance and time series data has been obtained for fault classification. Moreover, the temporal convolutional neural network (TCN) is used for fault classification in 500 kV transmission network due to its robust framework. From simulation results, it is found that faults in 500 kV transmission line are classified with 99.9% accuracy. Furthermore, the simulation results of the TCN model compared to bidirectional long short‐term memory (BiLSTM) and Gated Recurrent Unit (GRU) and it has been found that TCN model is capable of classifying faults in 500 kV transmission line with high accuracy due to its ability to handle long receptive field size, less memory requirement and parallel processing due to dilated causal convolutions. Through this work, the meantime to repair of 500 kV transmission line can be reduced.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3