Affiliation:
1. Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei China
2. Science Island Branch, Graduate School of USTC University of Science and Technology of China Hefei China
Abstract
AbstractTo solve the problem of optical path difference velocity (OPDV) stability in the Fourier spectrometer, a Cerebellar Model Articulation Controller‐Proportional‐Integral‐Derivative (CMAC‐PID) composite control strategy is proposed. The relationship between the angular velocity of the rotary‐type voice coil motor (RT‐VCM) and the OPDV was studied, along with a mathematical model of the parallel rotating mirror interferometer system. CMAC‐PID is designed and simulated on this basis to suppress the disturbance of nonlinear factors in the system model. The simulation results demonstrate that the steady‐state fluctuation error of the CMAC‐PID controller is 90.1% less than that of the PID controller. The experimental results indicate that compared to the PID controller, the CMAC‐PID controller improves the stability of the OPDV by 1.25%, which means that time‐varying disturbances are effectively suppressed.
Funder
National Key Research and Development Program of China
Key Research and Development Plan of Zhejiang Province