Affiliation:
1. Department of Psychology University of Southern California Los Angeles California
2. School of Psychology and Neuroscience, College of Medical, Veterinary, and Life Sciences University of Glasgow Glasgow United Kingdom
Abstract
AbstractThere is a vast array of new and improved methods for comparing groups and studying associations that offer the potential for substantially increasing power, providing improved control over the probability of false positives, and yielding a deeper and more nuanced understanding of data. These new techniques effectively deal with four insights into when and why conventional methods can be unsatisfactory. But for the non‐statistician, this vast array of techniques for comparing groups and studying associations can seem daunting. This article briefly reviews when and why conventional methods can have relatively low power and yield misleading results. The main goal is to suggest guidelines regarding the use of modern techniques that improve upon classic approaches such as Pearson's correlation, ordinary linear regression, ANOVA, and ANCOVA. This updated version includes recent advances dealing with effect sizes, including situations where there is a covariate. The R code, figures, and accompanying notebooks have been updated as well. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Subject
Medical Laboratory Technology,Health Informatics,General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献