Impact of zein and lignin‐PLGA biopolymer nanoparticles used as pesticide nanocarriers on soybean growth and yield under field conditions

Author:

Bonser Colin A. R.1ORCID,Borgatta Jaya2ORCID,White Jason C.2ORCID,Astete Carlos E.3ORCID,Sabliov Cristina M.3ORCID,Davis Jeffrey A.1ORCID

Affiliation:

1. Department of Entomology LSU Agricultural Center Baton Rouge Louisiana USA

2. Connecticut Agricultural Experiment Station New Haven Connecticut USA

3. Department of Biological and Agricultural Engineering LSU Agricultural Center Baton Rouge Louisiana USA

Abstract

AbstractNanoparticles are being utilized in agriculture as fertilizers, pesticides, and agrochemical‐carriers. Designed to be biocompatible and degradable, biopolymer nanoparticles were developed as an alternative to metallic nanoparticles, and though safe‐by‐design, polymeric nanoparticles must be field‐tested prior to largescale use. Several field studies were conducted to observe detrimental effects of biopolymer nanoparticles on plant growth and yield using soybean, Glycine max (L.) Merr., as a model system. Biopolymer nanoparticles made from lignin or zein were applied as seed treatments to soybean seeds or as foliar sprays (zein only) to soybean plants. Studies using biopolymer nanoparticle seed treatments (nano‐STs) measured the germination rates and seedling growth were evaluated in the laboratory, while stand counts, plant height, growth stage, yield, and hundred‐seed weight were measured in the field. Foliar treatments assessed nanoparticle impact on flower abortion and pod production. To ensure nano‐STs would not compromise the plant's defensive capabilities, herbivore feeding was assessed using a leaf bioassay for defoliators and a seed damage index for pod feeders. Growth rate, percent germination, or root length were not impacted by nano‐STs. In the field, nano‐STs had no impact on stand counts, heights, growth stage, yield, and hundred‐seed weights. Leaf feeding assays and damage indices indicate plant susceptibility to herbivore attack was not increased due to nano‐STs. Foliar applications of zein nanoparticles did not increase flower abortion or decrease pod set. These results indicate that biopolymer nanoparticles have no negative effects on growth, yield, and herbivore susceptibility and should be suitable for use in agriculture.

Funder

U.S. Department of Agriculture

Louisiana Soybean and Grain Research and Promotion Board

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Plant Science,Soil Science,Agricultural and Biological Sciences (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3