Characterization of metabolic features and potential anti‐osteoporosis mechanism of pinoresinol diglucoside using metabolite profiling and network pharmacology

Author:

Tu Xin‐Pu12,Wu Si‐Xian1,Li Meng‐Yin1,Chen Zi‐Hao2,Liu Cheng‐Jun2,Ruan Yan‐Jie2,Zeng Jian‐Bin1,Shi Wei2,Liu Jian‐Hang1,Zhang Feng‐Xiang12ORCID

Affiliation:

1. Beihai Hospital of Chinese Medicine Beihai China

2. State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin China

Abstract

RationaleEucommia cortex is the core herb in traditional Chinese medicine preparations for the treatment of osteoporosis. Pinoresinol diglucoside (PDG), the quality control marker and the key pharmacodynamic component in Eucommia cortex, has attracted global attention because of its definite effects on osteoporosis. However, the in vivo metabolic characteristics of PDG and its anti‐osteoporotic mechanism are still unclear, restricting its development and application.MethodsUltra‐high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry was used to analyze the metabolic characteristics of PDG in rats, and its anti‐osteoporosis targets and mechanism were predicted using network pharmacology.ResultsA total of 51 metabolites were identified or tentatively characterized in rats after oral administration of PDG (10 mg/kg/day), including 9 in plasma, 28 in urine, 13 in feces, 10 in liver, 4 in heart, 3 in spleen, 11 in kidneys, and 5 in lungs. Furan‐ring opening, dimethoxylation, glucuronidation, and sulfation were the main metabolic characteristics of PDG in vivo. The potential mechanism of PDG against osteoporosis was predicted using network pharmacology. PDG and its metabolites could regulate BCL2, MARK3, ALB, and IL6, involving PI3K‐Akt signaling pathway, estrogen signaling pathway, and so on.ConclusionsThis study was the first to demonstrate the metabolic characteristics of PDG in vivo and its potential anti‐osteoporosis mechanism, providing the data for further pharmacological validation of PDG in the treatment of osteoporosis.

Funder

Natural Science Foundation of Guangxi Province

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Guangxi Zhuang Autonomous Region

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3