New cases of recently described Thauvin‐Robinet‐Faivre syndrome with a novel homozygous FIBP gene variant

Author:

Kılıç Esra1ORCID,Koşukcu Can2ORCID

Affiliation:

1. Department of Pediatric Genetics University of Health Sciences, Ankara Bilkent City Children's Hospital Ankara Turkey

2. Department of Bioinformatics Hacettepe University Institute of Health Sciences Ankara Turkey

Abstract

AbstractThauvin‐Robinet‐Faivre syndrome (#617107) is a rare autosomal recessive overgrowth syndrome characterized by intellectual disability, facial dysmorphism, macrocephaly, and variable congenital malformations. It is caused by homozygous or compound heterozygous FIBP gene mutations. The FIBP gene is located on the 11q13.1 region and codes the acidic fibroblast growth factor intracellular binding protein, which is involved in the fibroblast growth factor (FGF) signaling pathway. FGF signaling is required for neurogenesis and neuronal precursor proliferation. The FGF controls cell proliferation, differentiation, and migration in embryonic development and in adult life. Overgrowth syndromes consist of a wide spectrum disorders characterized by prenatal and postnatal excess growth in weight and length, often associated malformations, intellectual disability, and neoplastic predisposition. Embryonic tumors are especially common in these syndromes. Thauvin‐Robinet‐Faivre syndrome is a recently described overgrowth syndrome with typical facial dysmorphic and clinical features. To date, only four patients have been reported with this disorder. Herein, two new cases of Thauvin‐Robinet‐Faivre syndrome are reported with overgrowth, intellectual disability, typical dysmorphic signs in one dysplastic kidney, and a novel homozygous FIBP gene variant. Exome sequencing analysis showed that both affected siblings share the same homozygous c. 412‐3_415dupCAGTTTG FIBP gene variant. Reporting two new cases with this rare autosomal recessive overgrowth syndrome with a novel FIBP gene variant will support and expand the clinical spectrum of Thauvin‐Robinet‐Faivre syndrome. Also discussed will be the function of FIBP in tumorigenesis and the possible renal tumor susceptibility in heterozygous carriers will be emphasized.

Publisher

Wiley

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3