Maternal CHD7 gonosomal mosaicism in a fetus with CHARGE syndrome

Author:

Bai Ting123ORCID,Shen Ying4,Yang Yanting12,Dai Siyu3,Liu Hongqian123

Affiliation:

1. Department of Medical Genetics, West China Second University Hospital Sichuan University Chengdu China

2. Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education Chengdu China

3. Department of Obstetrics and Gynecology, West China Second University Hospital Sichuan University Chengdu China

4. Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU‐CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital Sichuan University Chengdu China

Abstract

AbstractParental mosaicism is important in families with de novo mutations. Herein, we report a case of fetal CHARGE syndrome (CS) with a CHD7 variant inherited from maternal CHD7 gonosomal mosaicism. The variant was detected through trio‐based whole‐exome sequencing and Sanger sequencing. High‐depth whole‐exome sequencing was performed for the identification of parental mosaicism. A novel heterozygous CHD7 nonsense mutation (c.5794G>T/ p.E1932*) was detected in the tissue from the aborted fetus. The parents were wild‐type, indicating that the mutation was a de novo variant. The mutation was suspected to be the cause of the fetal CS. However, high‐depth whole‐exome sequencing revealed maternal gonosomal mosaicism at a variant allele frequency of 3.2%–23.3%. The variant was identified in various tissues (peripheral blood, hair follicles, buccal epithelia, and pharyngeal epithelia) from the asymptomatic mother. We confirmed maternal CHD7 gonosomal mosaicism as a genetic cause of fetal CS. Our results emphasize the importance of clinical analysis in accurately determining the parents’ status in detecting the CHD7 de novo variant in fetal CS, as this analysis has vital implications for evaluating the recurrence risk for genetic counseling.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3