Molecular changes and physiological responses involved in migratory bird fuel management and stopover decisions

Author:

Bounas Anastasios1ORCID,Talioura Artemis1,Komini Chrysoula1,Toli Elisavet‐Aspasia1,Sotiropoulos Konstantinos1,Barboutis Christos12

Affiliation:

1. Department of Biological Applications and Technology University of Ioannina Ioannina Greece

2. Antikythira Bird Observatory, Hellenic Ornithological Society/BirdLife Greece Athens Greece

Abstract

AbstractMigratory birds undertake long journeys across continents to reach breeding habitats with abundant resources. These migrations are essential for their survival and are shaped by a complex interplay of physiological adaptations, behavioral cues, and gene expression patterns. Central to migration are stopovers, critical resting points where birds replenish energy stores before continuing their journey. In this study, we integrate physiological measurements, behavioral observations, and molecular data from temporarily caged migrating Garden Warblers (Sylvia borin) to gain insights into their stopover strategies and physiological adaptations after crossing the extended ecological barrier formed by the Sahara Desert and the Mediterranean Sea. Depleted individuals, marked by low body mass and flight muscle mass, showcased remarkable plasticity in recovering and rapidly rebuilding energy stores within a short 5‐day stopover. Flight muscle mass increased during this period, highlighting a dynamic trade‐off between muscle rebuilding and refuelling. Notably, birds prioritizing muscle rebuilding exhibited a trade‐off with the downregulation of genes related to lipid transport and metabolism and at the same time showing evidence of skeletal muscle angiogenesis. Early arrivals were more motivated to depart and exhibited higher levels of physiological stress. Our study highlights the importance of understanding the adaptive responses of birds to changing environmental conditions along their migration routes.

Funder

Hellenic Foundation for Research and Innovation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3