Parameter estimation of inverse Weibull distribution under competing risks based on the expectation–maximization algorithm

Author:

Alotaibi Refah1,Rezk Hoda2,Park Chanseok3ORCID

Affiliation:

1. Department of Mathematical Sciences, College of Science Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia

2. Department of Statistics Al‐Azhar University Cairo Egypt

3. Applied Statistics Laboratory, Department of Industrial Engineering Pusan National University Busan Korea (the Republic of)

Abstract

AbstractA system consisting of interconnected components in series is under consideration. This research focuses on estimating the parameters of this system for incomplete lifetime data within the framework of competing risks, employing an underlying inverse Weibull distribution. While one popular method for parameter estimation involves the Newton–Raphson (NR) technique, its sensitivity to initial value selection poses a significant drawback, often resulting in convergence failures. Therefore, this paper opts for the expectation–maximization (EM) algorithm. In competing risks scenarios, the precise cause of failure is frequently unidentified, and these issues can be further complicated by potential censoring. Thus, incompleteness may arise due to both censoring and masking. In this study, we present the EM‐type parameter estimation and demonstrate its superiority over parameter estimation based on the NR method. Two illustrative examples are provided. The proposed method is compared with the existing Weibull competing risks model, revealing the superiority of our approach. Through Monte Carlo simulations, we also examine the sensitivity of the initial value selection for both the NR‐type method and our proposed method.

Funder

National Research Foundation of Korea

Princess Nourah Bint Abdulrahman University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3