TD‐DFT analysis of the excitation of H‐dimers of cationic dyes in an aqueous solution using functionals without additional dispersion correction

Author:

Kostjukov Victor V.1ORCID

Affiliation:

1. Sevastopol State University Sevastopol Crimea

Abstract

AbstractThis work is a development and extension of the previous one (DOI: 10.1039/d3cp00882g). Here, H‐dimers of acridine (acridine orange—AO and proflavine—PF), thiazine (methylene blue—MB and thionine—TH), and oxazine (brilliant cresyl blue—BCB and Nile blue—NB) dyes were modeled using hybrid functionals with a large proportion of exact Hartree–Fock exchange and long‐range correction. It turned out that nine functionals (LC‐ωHPBE, M06HF, M052X, M062X, M08HX, M11, MN15, SOGGA11X, and ωB97XD) reliably stabilize these molecular aggregates in both the ground and excited states. In addition, these functionals ensure that the conditions for transition moments (M(dimer) ≈ M(monomer) from strong coupling theory for H‐aggregates) and absorption maxima (λmax(dimer) < λmax(monomer) from Kasha exciton theory) are met. The S2 excited state stabilizes the H‐dimers more strongly than the ground state, while the S1 state stabilizes even more than S2. This is due to the large overlap between the corresponding molecular orbitals (LUMO > HOMO−1 > HOMO). When calculating the vibronic absorption spectra, the best agreement with the experiment for AO2, PF2, and NB2 showed the M08HX functional, and M11—for MB2 and BCB2. For dye monomers, these functionals gave the worst agreement, and MN15 demonstrated the closest similarity to the experiment. Vibronic absorption spectra for AO2, MB2, BCB2, and NB2 were calculated for the first time. The exciton splitting is calculated, which for MB2 is in good agreement with the experimental value.

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3