Research on driving technology of radio‐over‐fiber (ROF) compact optical transmitter module

Author:

Wang Chong1,Zhang Zhiyi1ORCID,Fan Tingting1,Hou Tiankai1,Zhou Jiashen1

Affiliation:

1. School of Electronic Engineering Xi'an University of Posts and Telecommunications Xi'an Shaanxi China

Abstract

AbstractIn response to the problems of communication capacity and spectrum resource constraints, radio over fiber (ROF) technology has gained widespread adoption, and the quality and performance of the optical transmitter module also directly affect the transmission of the link. This paper presents the design of a direct modulation optical transmitter module in the frequency band ranging from 2.6 kHz to 206.8 MHz using OPA690 broadband voltage feedback op‐amp. The module features a tunable bias voltage range from 0 to 5 V to accommodate different threshold voltages for modulation power supply. It offers a gain of 12 dB and a signal‐to‐noise ratio exceeding 50 dB while demonstrating excellent stability, high signal purity, good spectral response characteristics, and compact size advantages. Based on this design, we further optimized the system circuit by adding a fourth‐order Butterworth filter structure, reducing the lower cut‐off frequency to about 500 Hz, increasing the gain by 6 dB, reducing the return loss to −26.91 dB, and the module's signal‐to‐noise ratio exceeding 90 dB. This optimization scheme improves the stability and signal purity of the optical transmitter module and improves the spectral response characteristics. In this paper, Multisim is used to analyze and verify the proposed optical transmitter circuit. In addition, a complete link experiment was carried out using an optical receiving module designed in the same laboratory to verify the feasibility of our proposed module.

Funder

Natural Science Basic Research Program of Shaanxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3