Geophysics reveals forest vulnerability to drought

Author:

McGrath Gavan S.12ORCID,Fontaine Joe B.3,Van Dongen Ricky1,Hyde Josephine1,Leopold Matthias2,Matusick George3,Ruthrof Katinka X.13

Affiliation:

1. Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions Kensington Western Australia Australia

2. UWA School of Agriculture and Environment University of Western Australia Perth Western Australia Australia

3. School of Environmental and Conservation Sciences Murdoch University Murdoch Western Australia Australia

Abstract

AbstractDrought and heat‐induced forest die‐off are being increasingly reported across the planet. As vulnerable areas tend to have thin soils and poor water holding capacities, quantification of soil depth thresholds, relative to drought intensity, has global implications for identifying forest areas at risk. Measuring soil depth at forest stand or regional scales is, however, difficult. Our aim was to quantify soil thickness across drought impacted forest stands using geophysics. We asked whether impacted sites had shallow soils and whether soil thickness was associated with drought effects and forest structure. Electrical resistivity measurements were conducted at three sites in the Northern Jarrah Forest, Western Australia, which experienced die‐off during a 2010 drought and subsequent 2011 heatwave. Multispectral imaging quantified stand structure and vegetation cover. Geophysics identified shallow bedrock in the centre of all drought sites. Soil thicknesses correlated well with stand structure and cover, consistent with increasing water limitation in thinner soils. Smaller cover by trees and shrubs, more ground cover and shorter canopies were observed in soils <20 m thick and were more likely in soils <12 m thick, while treeless areas had thin soils, <2 m thick. The apparent resilience of this forest to long‐term drying looks to be due to the region's deep soils. With predicted future drying it is expected die‐off patches will expand outwards and new die‐off patches will emerge over thin soils. Geophysics can identify areas of forest vulnerable to future drought events, suggesting the potential for landscape‐scale mapping of drought vulnerability via airborne methods.

Publisher

Wiley

Subject

Earth-Surface Processes,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3