Identification of potential therapeutic drugs targeting core genes for systemic lupus erythematosus (SLE) and coexisting COVID‐19: Insights from bioinformatic analyses

Author:

Chen Chao1,Zhang Hongjian2,Lin Yanbin2,Lu Meiqi2,Liao Quan2,Zhang Shichao2,Chen Weibin2,Zheng Xiongwei2,Li Yunpeng2,Ding Rui2,Wan Zheng2ORCID

Affiliation:

1. School of Medicine, Institute of Genomics Huaqiao University Xiamen China

2. Department of Oncology and Vascular Interventional Radiology Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University Xiamen Fujian China

Abstract

AbstractObjectiveSystemic lupus erythematosus (SLE) patients are at risk during the COVID‐19 pandemic, yet the underlying molecular mechanisms remain incompletely understood. This study sought to analyze the potential molecular connections between COVID‐19 and SLE, employing a bioinformatics approach to identify effective drugs for both conditions.MethodsThe data sets GSE100163 and GSE183071 were utilized to determine share differentially expressed genes (DEGs). These DEGs were later analyzed by various bioinformatic methods, including functional enrichment, protein–protein interaction (PPI) network analysis, regulatory network construction, and gene–drug interaction construction.ResultsA total of 50 common DEGs were found between COVID‐19 and SLE. Gene ontology (GO) functional annotation revealed that “immune response,” “innate immune response,” “plasma membrane,” and “protein binding” were most enriched in. Additionally, the pathways that were enriched include “Th1 and Th2 cell differentiation.” The study identified 48 genes/nodes enriched with 292 edges in the PPI network, of which the top 10 hub genes were CD4, IL7R, CD3E, CD5, CD247, KLRB1, CD40LG, CD7, CR2, and GZMK. Furthermore, the study found 48 transcription factors and 8 microRNAs regulating these hub genes. Finally, four drugs namely ibalizumab (targeted to CD4), blinatumomab (targeted to CD3E), muromonab‐CD3 (targeted to CD3E), and catumaxomab (targeted to CD3E) were found in gene–drug interaction.ConclusionFour possible drugs that targeted two specific genes, which may be beneficial for COVID‐19 patients with SLE.

Funder

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3