Enhancing the network specific individual characteristics in rs‐fMRI functional connectivity by dictionary learning

Author:

Jain Pratik1,Chakraborty Ankit1,Hafiz Rakibul2,Sao Anil K.3,Biswal Bharat2ORCID

Affiliation:

1. School of Computing and Electrical Engineering Indian Institute of Technology Mandi Mandi India

2. Department of Biomedical Engineering New Jersey Institute of Technology Newark New Jersey 07102 USA

3. Department of Electrical Engineering and Computer Science Indian Institute of Technology Bhilai Bhilai India

Abstract

AbstractMost fMRI inferences are based on analyzing the scans of a cohort. Thus, the individual variability of a subject is often overlooked in these studies. Recently, there has been a growing interest in individual differences in brain connectivity also known as individual connectome. Various studies have demonstrated the individual specific component of functional connectivity (FC), which has enormous potential to identify participants across consecutive testing sessions. Many machine learning and dictionary learning‐based approaches have been used to extract these subject‐specific components either from the blood oxygen level dependent (BOLD) signal or from the FC. In addition, several studies have reported that some resting‐state networks have more individual‐specific information than others. This study compares four different dictionary‐learning algorithms that compute the individual variability from the network‐specific FC computed from resting‐state functional Magnetic Resonance Imaging (rs‐fMRI) data having 10 scans per subject. The study also compares the effect of two FC normalization techniques, namely, Fisher Z normalization and degree normalization on the extracted subject‐specific components. To quantitatively evaluate the extracted subject‐specific component, a metric named is proposed, and it is used in combination with the existing differential identifiability metric. It is based on the hypothesis that the subject‐specific FC vectors should be similar within the same subject and different across different subjects. Results indicate that Fisher Z transformed subject‐specific fronto‐parietal and default mode network extracted using Common Orthogonal Basis Extraction (COBE) dictionary learning have the best features to identify a participant.

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Reference75 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3