Functional Remodeling of Benign Human Prostatic Tissues In Vivo by Spontaneously Immortalized Progenitor and Intermediate Cells

Author:

Jiang Ming1,Strand Douglas W.1,Fernandez Suzanne1,He Yue2,Yi Yajun3,Birbach Andreas4,Qiu Qingchao3,Schmid Johannes4,Tang Dean G.5,Hayward Simon W.12

Affiliation:

1. Department of Urological Surgery, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA

2. Department of Cancer Biology, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA

3. Department of Genetic Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA

4. Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria

5. Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA

Abstract

Abstract Tissue remodeling or regeneration is believed to initiate from multipotent stem and progenitor cells. We report here the establishment of two spontaneously immortalized adult non-tumorigenic human prostate epithelial cell lines, NHPrE1 and BHPrE1. NHPrE1 (CD133high/CD44high/OCT4high/PTENhigh) was characterized as a putative progenitor cell, and BHPrE1 (p63high/p53high/p21(WAF1)high/RBhigh) was characterized as a putative epithelial intermediate cell. Genomic analysis demonstrated an abnormal karyotype with genomic rearrangements including PTEN amplification in NHPrE1 and CTNNB1 (β-catenin) amplification in BHPrE1 cells. Embedded three-dimensional culture of NHPrE1 showed greater branching than BHPrE1. A tissue recombination-xenografting model was utilized to compare remodeling of human prostatic tissues in vivo. A series of tissue recombinants, made by mixing different ratios of human prostatic epithelial cells and inductive rat urogenital sinus mesenchyme, were grafted to the renal capsule of severe combined immunodeficient mice. Both cell lines were able to regenerate benign secretory ductal-acinar architecture in vivo, containing intact basal and luminal epithelial layers confirmed by the expression of appropriate CK profiles. Prostate-specific antigen, 15-lipoxygenase-2, androgen receptor, and NKX3.1 proteins were appropriately expressed in the regenerated epithelia. Regeneration of benign prostatic glandular structures could be achieved using as few as 10 NHPrE1 cells, whereas 200,000 BHPrE1 cells were required to achieve prostatic architecture. This suggests a greater proportion of progenitor/stem cells in NHPrE1 than in BHPrE1. These cell lines provide important data on progenitor and intermediate cell phenotypes and represent significant new tools for the elucidation of molecular mechanisms of human prostatic regeneration, pathogenesis, and carcinogenesis.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3