Machine learning identification of microhabitat features associated with occupancy of artificial nestboxes by hazel dormice Muscardinus avellanarius in a UK woodland site

Author:

Malyan Joe12,Lloyd Amanda J.3,González‐Suárez Manuela2ORCID

Affiliation:

1. Lead Ranger, Parks and Countryside Department, Bracknell Forest Council Bracknell UK

2. Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading Reading UK

3. Ecological Consultant Wantage UK

Abstract

Hazel dormice Muscardinus avellanarius have severely declined since 2000 leading to increased legislative protection in the UK and Europe. Artificial nestboxes are widely used for its conservation and monitoring. Previous research has focused on how to identify suitable areas for nestboxes, but where to place individual boxes to promote occupancy is less well understood. Here, we demonstrate the use of machine learning Random Forest regression to predict nestbox occupancy from a wide range of microhabitat variables using a UK woodland as a case study. Random forest models are powerful predictive tools that allow simultaneous testing of many predictors with relatively few observations.Field data included observed nestbox occupancy (2017–2021) and measurements of 76 microhabitat variables collected in the summer of 2021 from 45 occupied and unused nestboxes located in a deciduous woodland in Berkshire, UK. We applied Random Forest regression to identify important variables and predict nestbox occupancy demonstrating robust approaches to tune model hyperparameters and evaluate importance metrics.In our study area, nestboxes were more likely to be occupied in sites with more hazel Corylus avellana, greater overall tree abundance but not fully closed canopies (optimal 80–85%), more honeysuckle Lolium periclymenum and hawthorn Crataegus monogyna, and when located further from footpaths and woodland margins. Occupancy over the study period was well predicted using microhabitat variables (13.3% OOB error) but future occupancy was more uncertain (33.3% error for 2021–2023 records).Modelling approaches that allow consideration of numerous variables from few locations or observations can be help identify relevant features and predict desirable outcomes of conservation actions. Here we demonstrate this approach identifying microhabitat variables that influence artificial nestbox occupancy by hazel dormice in a UK woodland. Findings offer some recommendations for local management that could promote nestbox occupancy and improve monitoring and conservation efforts.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3