North Atlantic atmospheric circulation indices: Links with summer and winter temperature and precipitation in north‐west Europe, including persistence and variability

Author:

Simpson Ian1ORCID,Hanna Edward1ORCID,Baker Laura2ORCID,Sun Yiming3,Wei Hua‐Liang3

Affiliation:

1. Department of Geography and Lincoln Climate Research Group, College of Science University of Lincoln Lincoln UK

2. National Centre for Atmospheric Science, Department of Meteorology University of Reading Reading UK

3. Department of Automatic Control and Systems Engineering University of Sheffield Sheffield UK

Abstract

AbstractVariability in seasonal weather in north‐west Europe is substantially determined by jet stream variability. The North Atlantic Oscillation (NAO) has been well studied as a key representation of this jet stream variability, but other circulation indices are also important. Here the first three principal component empirical orthogonal functions (EOFs) of 500 hPa geopotential height (GPH), which broadly correspond to the NAO, the East Atlantic pattern (EA) and Scandinavian pattern (SCA), as well as jet speed and latitude, are correlated with temperature and precipitation anomalies over Europe with a focus on north‐west Europe, as well as measures of persistence and variability. In high summer (July and August), all three of the principal EOFs are significantly correlated with extreme temperatures in large areas of northern Europe. In winter, for much of north‐west Europe, both temperatures and precipitation are positively correlated with the jet speed, and precipitation is negatively correlated with EOF3. There is some non‐stationarity in some of the relationships, notably between winter precipitation and EOF1, and between July/August precipitation and EOF2. In addition to single variate correlations, multiple correlation coefficients are also used to determine areas of significant correlation when combining two or three of the circulation indices. The multiple correlation analyses show that combining the three EOFs produces significant correlations with temperature and precipitation over much of Europe. These analyses provide scope for using seasonal forecasts to predict likely temperature and precipitation anomalies based on predicting the atmospheric circulation anomalies and downscaling them. Improved seasonal forecasts of temperature and precipitation, including persistence and variability, will be useful to a number of users, such as agrifood, transport, energy supply and insurance.

Funder

Natural Environment Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3