Blockchain‐Enabled Decentralized Healthcare Data Exchange: Leveraging Novel Encryption Scheme, Smart Contracts, and Ring Signatures for Enhanced Data Security and Patient Privacy

Author:

Vidhya S.1ORCID,Siva Raja P. M.1,Sumithra R. P.1

Affiliation:

1. Department of Computer Science and Engineering Amrita College of Engineering and Technology Nagercoil Tamilnadu India

Abstract

ABSTRACTThe healthcare industry has undergone a digital transformation in recent years, with the adoption of electronic health records (EHRs) becoming increasingly prevalent. While this digitization offers various advantages, concerns regarding the security and privacy of sensitive medical data have also intensified. Data breaches and cyber‐attacks targeting healthcare organizations have underscored the need for robust solutions to protect patient data. Blockchain technology has emerged as a promising solution due to its decentralized and immutable nature, which ensures secure and transparent data recording. This paper proposes a novel approach that combines blockchain with advanced encryption scheme and privacy protection technique to establish a secure and privacy protected medical data sharing environment. The proposed system consists of three phases such as initialization phase, data processing phase, and authentication phase. The hybrid Feistal‐Shannon homomorphic encryption algorithm (HFSHE) is proposed to encrypt the medical data to ensure data confidentiality, integrity, and availability. Ring signature is integrated to the system to provide additional anonymity and protect the identities of the participants involved in data transactions. In addition, the smart contract developed performs authentication checks on users, generates a time seal, and verifies the ring signature. Through this enhancement, the system becomes more resilient to both external and internal threats, enhancing overall security as well as privacy. A comprehensive security analysis is conducted to compare the proposed method's performance against existing techniques. The results demonstrate the effectiveness of the proposed approach in safeguarding sensitive medical information within the blockchain ecosystem.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3