VTCNet: A Feature Fusion DL Model Based on CNN and ViT for the Classification of Cervical Cells

Author:

Li Mingzhe1ORCID,Que Ningfeng1,Zhang Juanhua1,Du Pingfang1,Dai Yin12ORCID

Affiliation:

1. College of Medicine and Biological Information Engineering Northeastern University Shenyang China

2. Engineering Center on Medical Imaging and Intelligent Analysis, Ministry Education Northeastern University Shenyang China

Abstract

ABSTRACTCervical cancer is a common malignancy worldwide with high incidence and mortality rates in underdeveloped countries. The Pap smear test, widely used for early detection of cervical cancer, aims to minimize missed diagnoses, which sometimes results in higher false‐positive rates. To enhance manual screening practices, computer‐aided diagnosis (CAD) systems based on machine learning (ML) and deep learning (DL) for classifying cervical Pap cells have been extensively researched. In our study, we introduced a DL‐based method named VTCNet for the task of cervical cell classification. Our approach combines CNN‐SPPF and ViT components, integrating modules like Focus and SeparableC3, to capture more potential information, extract local and global features, and merge them to enhance classification performance. We evaluated our method on the public SIPaKMeD dataset, achieving accuracies, precision, recall, and F1 scores of 97.16%, 97.22%, 97.19%, and 97.18%, respectively. We also conducted additional experiments on the Herlev dataset, where our results outperformed previous methods. The VTCNet method achieved higher classification accuracy than traditional ML or shallow DL models through this integration. Related codes: https://github.com/Camellia‐0892/VTCNet/tree/main.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3